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Parallel Monte Carlo simulations using a residence weight algorithm
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A parallel Monte CarlaMC) algorithm, the residence weight algorithm, is proposed. This algorithm is an
extension to continuous ensembles of the residence time algorithm. The proposed algorithm consists of gen-
erating several trial MC moves in parallel, selecting one of them using appropriate relative probabilities and
correcting the non-Boltzmannian sampling procedure by means of appropriate configuration weights. The
corresponding parallel Boltzmannian scheme is based on a configurational-bias Monte Carlo scheme and will
also be considered. The efficiency of both parallel algorithms has been compared in a case study: the slow
relaxation dynamics in a model silicate. For a small number of trial moves generated in parallel, we observe
that the residence weight algorithm performs less efficiently than its corresponding configurational-bias scheme
by a factor of about 2. However, when the number of parallel trial moves increases and becomes larger than
ten, we observe that the residence weight algorithm and the corresponding configurational-bias scheme per-
form with equivalent efficiencies.
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I. INTRODUCTION The scope of this paper will concern the second approach
whose principle can be summarized as follows: let us con-
Equilibrium properties of a given statistical ensemble carsider that the basic moves to parallelize consist in random
be accurately estimated by performing Monte Carlo endisplacements applied to randomly selected particles. If the
semble averages: a chain of configuration in the phase spaf&ocedure allowing the construction of the new configuration
is constructed so as to sample the desired statistical el rom the initial one exhibits symmetric probabilities, a
semble. To construct this configuration chain, we must reP0SSible acceptance probabilify] for these moves is(i
peatedly generate a new configuration from the current ong’ ) =min(1,exp- BAE), where AE is the variation of the
using a stochastic process defined by some appropriate eV|(51_ternal energy. This implies that transitions with small dis-

lution rules that are to be specified. These evolution ruleglacement amplitudes .W'" have a small variatibi pf the .
S - . internal energy and will therefore be accepted with a high
must obey two principles, ergodicity and detailed balance, s

as to insure that the appearance probability of any generat obability, but will lead to a weak sampling efficiency. At

. o ' . I o riance, transitions with large displacement amplitudes will
configuration is compatible with the equilibrium statistics of ,,, hardly accepted due to a very low acceptance rate, but

the ensemble. Ergodicity states that any two configurationgegyit in a high sampling efficiency. Since the internal energy
of the phase space can be connected with a configuratiofaluation of trial configurations represents the largest
Cha.|n...Deta.|Ied balance that IS a-suffICIen.t but not a necessaafnount of the Computer time, |t appears beneficia| to gener-
condition states that the probability transition fluxes betweemyte high amplitudes displacements in parallel and to select
two configurationg’; andCs, the initial and final configura- one with an adequate procedureglthe CBMC
tions, respectively, are equal. This latter principle resultgconfigurational-bias Monte Cajlecheméso as to increase
from both the microreversibility and incompressibility of the the mean acceptance rate and thus the computational effi-
equations of mechanics. ciency.

For many systems of interest, and particularly for slowly All the mentioned Monte Carlo methods are said to be
relaxing amorphous structures, the need for saving compuBoltzmannian sampling schemes: consider a given configu-
ing time is a permanent request. An extensively exploitedation chain has been generated; the appearance probability
solution consists in increasing the sampling efficiency byof any configuration in the chain converges towards the Bolt-
means of “clever” Monte Carlo moves preferentially gener- Zmann weight when the length of the chain increases to in-
ated towards low energy configurations. Although the esserfinity. There also exists non-Boltzmannian schemes for
tial motivation for developing these elaborated Monte CarlgVhich configuration weights must be included in the sam-
algorithms is aimed at increasing the sampling efficiencypl'ng procedure so as to correct for the fact that the chain

some of these algorithms appear to be particularly Wel’f:_onfigurations are not distributed according to the equilib-

suited to parallel implementation since they offer a large port-" statistics. Although there exists numerous non-

tion of similar and independent tasks that can be easily disl;oltzmanman Monte Carlo sampling schemes, the parallel

tributed on distinct processors. This issue was noticed angnplementanon of such algorithms belonging to this second

discussed in a previous study by Esselink, Loyens, and Sm lass has never been consideferimy knowledge because
' ! isting schemes did not present large portions of indepen-
[1] who detailed the parallelization of force biga-5], and X1SNg ! b ge port indep

. - . dent tasks easy to parallelize.
configurational-biag6] Monte Carlo methods. In the present paper, we focus on the parallel implemen-

tation of a non-Boltzmannian method. For this purpose, a
scheme adapted for parallelization has been developed and
*Electronic address: Manuel.Athenes@cea.fr called the residence weight algorith(RWA). The paper is
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organized as follows: the essential features of the Boltzmandirection would not be identical, which would imply that Eq.
nian and non-Boltzmannian sampling techniques are first3) would not be unambiguously defined.

briefly recalled; in the following section, the residence Class(i) techniques includes, among many other schemes,
weight algorithm is described and a proof is given that athe force-bias[2-5] Monte Carlo scheme$FBMC) and
weighted detailed balance condition is obeyed; a comparaEBMC [6], respectively for which the parallelization was
tive study between the parallel residence weight algorithndiscussed previouslythe parallel force-bias algorithm is
and the equivalent parallel configurational-bias scheme isalled the hybrid molecular dynamics/Monte Carlo method

carried out on a case study. Class(ii) techniques comprises a wide range of algorithms.
The most naive such algorithm consists in performing ran-
II. MONTE CARLO SAMPLING SCHEMES dom sampling: a random configuratiGp, ; is generated in-

. dependently fronC, and is attributed a correcting weight
The two ways to perform Monte Carlo sampling, exposedTnJrloc .1, Which is compatible with Eq(3). More effi-
previously, are recalled. Note that this simple classification igjent clasg(ii) algorithms have however been developed for
ada_pt_ed for m(_)st Monte Carlo schemes currently us_ed iliscrete systems: the residence time algoriff@yLl0], de-
statistical physics, however, from a mathematical point oftajled in Appendix A, considers all the accessible configura-
view, more complete classifications have also been proposeg)ns from¢,, selects one of thend,,. 1, using an appropri-
[8]-_ o , ) ) ate probability function a(n—n+1), computes the
(i) Boltzmann sampling is obtained by introducing the correcting weight(residence timecompatible with Eq.(3)
statistical bias associated to the Monte Carlo move into aRnq yses it either to bias the configuration weight or to in-
acceptance probability7], which is itself derived from the  rement the time variable, depending on whether equilibrium
detailed balance equation or kinetic features are investigated.
Pb(i—f)c(i—f)=Pb(f—i)c(f—i), (1) In the random sampling scheme, the t_rar_lsition probability
from C, to C,. 1 does not depend af}, while in the follow-
whereP; (resp.P;) is the Boltzmann weights of the initial ing example, the transition probability frody, to C, ., does
configuration (resp. the final configuration and b(i —f) depend onC,. There also exists non-Boltzmannian algo-
[resp.b(f—1i)] is the probability to generate the trial con- rithms for which the transition probability froré, to C,; 1
figuration C; (resp.C;) starting from configuratior?’; (resp.  depends on botti, andC,,_;. In such a case, the algorithm is
Cs). The acceptance probabilities for the forwards and backsaid to be non-Markovian. This feature is present in some
wards trial transition are(i—f) andc(f—i), respectively. techniques aimed at calculating free energy differences be-
The acceptance probability proposed by Metropplis tween two canonical ensembles. This is for instance the case
. for the Rosenbluth sampling methgtil, 12, which is based
m 2y on the particle test insertion meth¢#i3]. This point is dis-
Pib(i—f) cussed in a companion pagé#]. In the following section, a
) ) ) o non-Boltzmannian algorithm that can be easily parallelized is
is compatible with Eq(1) and implies that one must com- ,rqn0sed. This algorithm appears to be the non-Markovian

pute thea priori probability b(f—i) of selecting the old  eytension of the residence time algorittidescribed in ap-
configuration from the new one and the statistical bias corpengix A) to continuous systems.

responds to the ratib(f—i)/b(i—f).
(ii) Non-Boltzmannian sampling: the statistical bias is ac-
counted for in the ensemble average so as to correct for the IIl. RESIDENCE WEIGHT ALGORITHM
imposed transitions. The weighted detailed balance condition | ot s consider that a chain of configuratich with

for this non-Boltzmannian sampling scheme requires weight 7, has been generated using the desired Monte Carlo
algorithm, where the numberis an increasing configuration

a(nt1l-n), (3)  index. The compatibility of the weighted chain with the equi-
librium statistic is insured by imposing the equality between

in the following biased averaging scheme that allow thefween any two configurations of the chain. The microrevers-
evaluation of a physical quantity, ibility imposes that if the whole configuration chain is re-

versed then configuratiaf), should always be a possible trial

c(i—>f)=min<1

Pn+1

Pn
—a(n—n+1)=
Tn Th+1

N . . . . ; i
) configuration from configurationC,,,; in the selection
; T A(l) scheme of the algorithm, even though the probability of ob-
(Ay,=—x—. (4)  tainingC, from C, .1 within a finite set of trial generation is
2 - “practically” zero in a continuous ensemble during a finite
= Monte Carlo simulation.

The RWA is therefore defined as follow&=—1 trial tran-
An essential additional condition that is to be obeyed consitions are randomly generated, an addition#d trial tran-
cerns the reversibility of the scheme itself. If this point is notsition pointing backwards to the previous configuration is
guaranteed, the correcting weightsobtained when the con- imposed; then a single transition, selected among tiZese
figuration chain is constructed in the forwards or backwardgossible trial transitions, is finally implemented. The intro-
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duced modifications imply that the Monte Carlo process pos- G(z)=z"'G(z Y. (10
sesses a memory that has to be taken into account in the

probability fluxes. Since the convergence to equilibrium is ) i

insured by the equality of the forwards and backwards prob- Since the sampling schenig. (4)] does not depend on

ability fluxes, the following weighted detailed balance con-Whether the configurgtion chain is traveled.backwards or for—_
dition should be obeyed: wards, the scheme itself must be reversible, and the resi-

dence weight$Eq. (9)] should not depend on the chain di-
rection. Considering the fact that the weighted detailed
balance condition also applies between configuratigns

(5) andC,, the residence weight invariance means that (Ej.
must remain invariant in+1 andn—1 are permuted. It

where a(l—mlk) is the conditional probability to transit implies the following relationship between the probabilities
from C, to Cyy knowing that the system was in configuration ,n_,n+ 1/n—1) anda(n—n—1|n+1):

Cy previously. From configuratio,, a(n—n+1|n—1) ac-

counts for the fact that the backwards transition towards

C,_, is imposed and thaZ—1 trial moves have to be gen- a(n—n+1n-1) _9(PalPn-1)
erated prior to selecting one among them. From configura- a(n—n—1n+1)  G(Py/Pny1)
tion C,, in Eq. (5), the forwards and imposed backwards

configurations are’, and C
backwards.

1 1
—Pra(n—n+1n—1)=—"P, 1a(n+1—-n|n+2),
Tn Th+1

(11)

n+2 Since the chain is traveled g condition guarantees that adequate residence weights

. . . can be deduced from E¢P). One now describes in details a
The “residence weights’r, and 7, , correspond t0 the 5516l procedure satisfying E€LY) that allows to generate

correction to introduce in the sampling scheme so as to re; _ 1 g configurations fron€,, and to select,,, ;. Let us

cover the equilibrium statistics. They can be interpreted ag . sider the referend®arkovian) moves that one wishes to
follows: if a weight of one is attributed to configuratidh, implement in parallel. For a move froth to C; with respec-
then the selected configuratidy, ; must be given a weight tive Boltzmann weight?, and P, , one defintjasbj the refer-

of 7,.1/7, SO as to correct for having imposed the transition.encea priori probability ;ndaj:’('bj)flg(P /P-)I the corre-

It then follows by induction that Eq(4) leads to a correct sponding acceptance rate Iln the appllicat]ive part of the
sampling scheme as shown below. Let us consider any twg .

configurationsC, andC, in the weighted chain. The transi- present study, ala priori probabilities will be equal to the
. p q ' - same constant value. We however take them into account so
tion flux from C, to C, is the product of the probability of

) ) . o as to draw the attention on the fact that they should not be
generating and selecting the trial probabilities for each of the ~ . . . : .
omitted if one wishes to derive more general algorithms.

q-p steps So as to construct a chain of weighted configuratign
) a-1 T,, One successively generats 1 new trial moves witha
K(p—aq)= 7-_an a(n—n+1[n—1), (6)  priori probabilitiesh’,, and selects one of them, let us say the
b n=

jath. The relative probability for this particular selection is
while the probability flux for generating the reverse macro-a;/(a, +EJ-Z:_ Lal), wherea, and a), are the acceptance

move is rates for the imposed backwards move andjthetrial move
p-1 (1=j=<Z-1), respectively. The configuration to point back-
K(g—p)= Za H a(n—n—1|n+1). (7) wards at the following step is the current configuration,
Tqn=q whether the selected move is backwards or forwards. Let us

- . o ) notea, the acceptance rate for the selected transitiongnd
Substituting Eq.(3) into Eq. (7) simplifies the residence he 5 priori probability for the imposed backwards move at
weight ratio to the nth step. One also defines the two invariant quantities

K(p—q) 7P % 70Poas ) " an=a5+2izz‘£a'nha]rc1d bn=db;HiZ:_1|1|b'?. Then the probability
= =1. to generate thath forwards parallel move is
K(A—P) ~ 7Pqa=p Tas1Pn ? P

Let us note that when an averaging procedure is initiated, the b,

weight of the first configuration is not specified since the a(n—n+1|n—1)=bna,/(asb, )= ——G(Py/Pni1).

previous configuration does not exist. This introduced bias n &nbn

can be safely neglected since in practice a large number of (12)

independent configurations is actually used.

~One now considers a possible residence weight compatrhe presence of both;, andb, in the denominator of the

ible with the weighted detailed balance equation: right hand side term in Eq12) results from the substitution
=a(n—=n+1n—1)[GP,/Por)]" " (99 of a, and from the fact that the backwards transition is im-

posed, respectively. Since alpriori probabilities are con-

where the acceptance functigh which will be specified by stant, this form is valid whether the transition is a reversal or

the reference moves that one wishes to parallelize, possessast. Similarly, the probability to carry out a backwards move

the following feature: from C, is
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The selected trial displacement is then accepted or rejected

a(n—n—1n+1)=b,a,/(a,b,)=— il ~G(PnlPn-1). according to the following acceptance probability:
nan n
13 i f)=mi ( W
c(i—f)=min l,Wf , (17

Since the ratio of equalityl2) with respect to equality13)

satisfies the condition of Eq11), the residence weight de- Whose form more closely corresponds to the Metropolis-like
duced from Eq(9) does not depend on which direction the RWA described in Appendix C. We will adopt the standard-
chain is generated. Omitting now the constant factor relativézed terminology{16] and refer to this algorithm as the par-

to thea priori probabilities, the residence weight is allel configurational-bias schenieCB).
1
Tn:a_’ (14) V. COMPARATIVE STUDY
n

A. Model problem

whose form is analogous to the conventional “residence The comparative study between the two algorithms has
time” of the residence time algorithm detailed in Appendix been carried out in a model silicate. The kinetics of the slow
A. The residence weight algorithm has been validated nustructural relaxation observed in amorphous materials below
merically on a body-centered cubic Ising model. Simple enits melting point is used as a benchmark for the study. Note
semble averages were performed by means of#qlt was  that in this comparative study, the RWA and the PCB scheme
checked that the computed valu@sich as chemical poten- are implemented with particle displacements and not particle
tials) did not depend on the number of parallel insertion/insertions or deletions as it is usually the case when the PCB
deletions and were in agreement with results obtained usinig implemented1,17]. The reason is that in our model sili-
conventional Monte Carlo schemes. cate, the slow relaxation kinetics offers a convenient and
A variant form for the RWA is also detailed in Appendix reliable tool to measure the algorithm efficiencies. Moreover,
C and will be used in special cases to check that the obtaindgly varying the particle amplitude displacement, the mean
results do not depend significantly on the specificity of theacceptance rate will also vary and its influence on the effi-
present algorithm form. In the following and unless other-ciencies can be easily investigated.
wise stated, simple particle displacements whose compo- The interatomic potentials are Born-Mayer-Huggins pair
nents are randomly chosen in a centred cube of edge 0.4 Potentials with additional three-body terms involving O-Si-O
will be considered for th& —1 reference moves. One will and Si-O-Si triplets so as to obtain a better agreement with
also use the Glauber-like residence weight algorithm detailethe experimental structures. Potential parameters are given
previously together with the acceptance functigifz) elsewherd18—-2(0. One has randomly inserted 384 silicon
=z"'2 Let us now present the Boltzmannian equivalentand 768 oxygen atoms in a cubic computational box of size
scheme for the residence weight algorithm. 25.9 A, which corresponds to a density of 2.21 gicithe
box is partially equilibrated by performing Monte Carlo ran-
dom atom displacements at the low temperature of 550 K.
The final configuration is taken as the starting configuration
The corresponding algorithm appears to be the energyfor the subsequent study.
biased Monte Carlo schemg15] or the parallel
configurational-bias schenjé6]. This scheme is the trans- B. Preliminary definitions
position of the CBMC scheme to simple particle displace-
ments, and is defined as follow& particle random displace-
ments are generated in paralld=<1,....Z) and one of
them is selected according to the Rosenbluth weights, whic
are expressed as

IV. CORRESPONDING BOLTZMANNIAN ALGORITHM

In this feasibility study, the parallelization is actually not
implemented, but will be studied by monitoring appropriate
fficiency parameters. Technical details about the paralleliza-
on are given elsewhefd 7]. The evolution of the relaxation
kinetics will be monitored as a function of the number of
parallel displacements, which corresponds to the computa-

= (iﬂk):L: P (15  tional time if the selection procedure and the communication
' - W time between processors is neglected. The evolution of the
kE P internal energy will also be monitored as a function of the
'=1

total number of trial displacements, which corresponds to the
total computational cost if the selection procedure and the
communication time between processors is neglected.

One thus defines the parallel efficiengy, which corre-
sponds to the gain in computing time when implementing the
moves in parallel with respect to the reference scheme con-
sidering only one trial move,

Say [X=2 ifRWA
M= 5ay | X=1 ifPCB,

whereP,. is the Boltzmann weight of a trial configuration. If
C; is the selected configuration and; is the Rosenbluth
weight obtained by generating—1 displacement frond;,
and imposing th&th last one ta’;, then the statistical bias
introduced is

WP
WP

B! (16) (18)
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FIG. 1. Evolution of the internal energy as a function of the  FIG. 3. Evolution of the internal energy as a function of the
number of movesgabscissawith the RWA and varying the number number of PCB attempted moves with varyig
of parallel displacementZ.

Knowledge of the behavior of both parallel and sequential
where da; corresponds to the relaxation rate of the internalefficiencies as a function of the number of parallel displace-
energy as a function of the number of Monte Carlo stepsmentsZ allows to optimize the use of a parallel computer.
obtained withZ parallel moves. One also defines the sequentowever, in our comparative study, it will also be instructive
tial efficiency oz, which corresponds to the gain in total to define and monitor the relative efficiency of the two algo-
CPU (central processing uniti.e., if sequential implemen- rithms. This one can be obtained from the ratio of the relax-
tation). Depending on whether RWA or PCB is implemented, ation rate for the RWA with respect to the one obtained for

the relationship with the parallel efficiency is the PCB scheme as follows:
Z—1) ifRWA _ RW PCB n— :
- mz(Z=1) | 19 pr=[8aBWAZ—1)]/[5a0°B(2Zz~1)] if Z>2
m,(2Z—1) if PCB. (20
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FIG. 2. Evolution of the internal energy as a function of the total ~ FIG. 4. Evolution of the internal energy as a function of the total
number of trial displacementabscissawith the RWA and varying  number of trial movegabscissawith the PCB scheme and varying
Z Z
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parallel and sequential efficiencies{ ando ) as a function of the FIG. 6. Evolution of the relative efficiency, as a function of
number of parallel trial moveZ: (a) for the RWA and(b) for the the number of parallel displacemengs

PCB scheme and the same legend a&jn

when the number of parallel generation first increases, the
probability to have generated at least one favorable displace-
pp= a5V 5alcB. (21)  ments is also enhanced, which explains the subsequent in-
crease of bothv; and, . For large increasing values and
the RWA, a5 is greater than 80% and saturates. The effi-
ciency 7, thus also saturates since only a single favorable
1. Parallel efficiency displacement can be carried out at once. For large increasing

Prior to comparing the residence weight algorithm to the” Values and the PCB scheme, the observed decreasiitg

parallel configurational-bias scheme, the influence of thé"‘ISO accompanied by a decreasimgvalue and is indeed a

number of parallel trial moves is investigated for both meth_consheq:cjenc?] of th('js weak accept?ncfe rater.] h
ods separately. Relaxation kinetics of the internal energy '€ fact thatx; decreases results from the way the PCB

have been computed using the residence weight algorithrﬁcheme operates. The st_ati.stical bia}g used by the scheme re-
with various numbers of parallel displaceme@&=2, 5, quires to compute aa priori probability for the system to

10, 20, 30, 50, 80, 100, 25@&nd have been displayed in generate and select the initial configuration from the final
Figs. 1 and 2, respectively. The efficiency parameters hav onfiguration. If the forwards move leads to an energetically
vorable configuration, and if favorable moves are also gen-

been estimated from the number of relaxation steps require . . . S
by the system to reach 4.618 108 J/atom. The quanti- erated from the final configuration, which is likely fédarge

ties 7, ando, have been plotted in Fig(8 so as to give an enough, then it means that one imposes the selection of an

indication of the general trend. One observes that the efﬁynfavorable configuration for the reverge priori move

ciency w7 increases with the increasing number of parallelam.Ong a set of conflguratlon_s containing one or more ener-
displacements beloz=50 and then stabilizes beyor getically favorable configurations. Fa& large enough and

=50. The optimal choice is thus abatit= 50 with a gainm, assuming t.ha.t favorablg di;plgcements present a spectrum of
about 20. Relaxation kinetics of the internal energy have€rey variations that is similar from bOt.h andCy, the
been computed using the parallel configurational-biagat'oWi IW; of the Rosenbluth factors, which enters the ac-
scheme with various numbers of parallel displacements
Z (Z=1, 5, 10, 20, 30, 50, 80, 100, 26and are displayed 1 — ”“""!”'05"0'00
in Figs. 3 and 4. The quantities, and oz have also been 0
estimated from the number of relaxation steps required by

the system to reach-4.63 10 '8 J/atom and have been

plotted in Fig. §b). One observes that the efficiency of the

algorithm 7, increases with the increasing number of paral- Pz
lel displacements untiz=30 and then abruptly decreases
beyondZ=30. The optimal choice is thus about 30 with a

gain of aboutr,=9.

So as to analyze and compare the observed behaviors, the L
mean acceptance rates for both the RWA and the PCB 01 1 10 100
scheme were computed and displayed in Fig. 5 as a function
of Z together withsr; ando, . A move is said to be accepted Z
with the RWA when it corresponds to a forwards move F|G. 7. Evolution of the relative efficiency, as a function of
(Ch+1#Cr-1). The mean acceptance rate for the standarghe number of parallel displacement, with a mean acceptance
Metropolis algorithm corresponds te, for the PCB scheme rate ofa,,=3.2x 10 3. The dotted line corresponds to the function
and was found equal to 5.6%. For both parallel schemegz—1)/z.

and

C. Results and discussion

o
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ceptance probability for the move is expected to be similar tdgained with the Glauber-like RWA. The reason for the weak
P, I'P;. This explains why the mean acceptance rajede-  performance of the RWA can be finally attributed to the fact
creases, as observed in Fig. 5. Note that the statement abdbat whenZ is small, an energetically favorable move is
the Rosenbluth ratio would not be correct if the trial sitesmore likely followed by an unfavorable move due to the
were placed into a region of phase space different from théorm of the selection probabilities, if we compare to the con-
old site, e.g., the particle swap move in the Gibbs ensemble/entional Metropolis algorithm. Even though an unfavorable

The above mentioned limitation does not appear with thenove subsequently leads to numerous reversals, it only re-
RWA. The reason lies in the structure of the algorithm itself.sults in slowing down the relaxation dynamics by a factor of
Let us consider that the system has transited ffqm, to an ~ about 2 with respect to the conventional dynamics.
energetically favorable configurati@l . For large enoug At variance, the relative efficiency is greater than 1 when
one can assume that the spectrum of Zhenergy variations Z is larger than 10: the RWA outperforms the PCB scheme.
is equivalent from botlC,,_; or C,, because trial sites are However, whenZ is larger than the mean acceptance rate
placed near the old site. The algorithm will generate an ena,;l for Metropolis moves, the PCB acceptance rajede-
ergetically favorable configuratiof},, with a high probabil-  creases drastically for the structural reasons explained previ-
ity and will select it C,, 1=C,+) with a high probability as ously and it is indeed this fact that explains the relative out-
well, although the correcting bias associated to configuratioperformance of the RWA.

C, will be very small[residence weight,, in Eq. (14)]. Fa- The outlined limitation of the PCB scheme is purely the-
vorable forwards moves are thus preferentially selected toretical and is not relevant from a practical view point, since
the detriment of unfavorable backwards moves. the parallel configurational-bias scheme should be imple-
mented in cases where the mean acceptance rate is about or
2. Sequential efficiency lower than 10°3. It is thus instructive to monitor the relative

efficiency in such a case.
: We have therefore carried out additional simulations with
5 displayso, for both the RWA and the PCB scheme. We a lower mean acceptance ram;(L%s.Zl(ﬂ). This was ar-

observe that both efficiencies decreased screases with tificially obtained by setting the particle displacement ampli-
Z. This means that if sequential implementation of the ran- y y g P b P

dom displacements is indeed carried out, both the RWA ant deent?n%)hzitcﬁegs\:\(/ei%d \?;roﬁ ﬁhghﬁuﬁlt?grvifeﬁ:rlglrllgly trr]igls
the PCB scheme do not present any advantages with respec? _varying B P .
to the standard Metropolis algorithm or the RWA with a moves up to 100. Itis obsgrvgd n F|g. ’ th"’.‘t the relative
single displacement=2), respectively. The reason for this efﬂmegcy tends towards 1 with increasidgln this case the

. ! ) RWA does not outperform the PCB scheme.
behavior may be explained as follows: both parallel algo-
rithms carry out single moves at each step and the probabil-d;rehn(:efa;tetzs:]irzf fcl?rer(fj(i)f;rgart]ceroobfle%);hr?svl\ﬁs a}?gmptii
ity to generate more than one favorable move increases Wit : P S
Z: since only a single move is implemented at best, the num§t_ructure of the RWA. Since the reversal rate is important
ber of favorable moves that are not implemented also iny\nth the RWA even for large numbers of parallel trial moves

Note that the loss of CPU for the RWA adt= 50 (stabi- call favorablé confi ugration and performs numerous re\?er—
lization of the parallel efficiengyis about a factor of y 9 P

- . sals leading to unfavorable configurations. From an
2.5 (02_9'4)’ while the IQS.S for t.he PCB scheme and unfavorable configuration the system will likely return to the
=30 (optimal parallel efficiency is about a factor of

" . favorable configuration but will wasteZ2-2 trial moves
6'6. (02=0.15). Th_e RWA seems 1o require Ie_s_s total CPU'(including both the forwards and backwards transitidrhis
This suggests to investigate the relative efficiency of the h fic representation imolies that e 2. the RWA is
RWA with respect to the PCB scheme. ISC ematic rep P T ;
ess efficient by a factor of 2 than the Metropolis algorithm
(PCB withZ=1) and that the dependence @rof the rela-
tive efficiency can be approximated by {1)/Z. This
In the previous discussions, the parallel and sequentiaimple predictive law is approximately observed in Fig. 7.
efficiencies were considered independently for each algo- Note that the observed trend seems to be general. Indeed,
rithms. We now examine the relative efficiency for these twoadditional simulations were carried out using a different form
algorithms. for the acceptance functiog(z)=min(1z ). This form
One observes in Fig. 6 that, the relative efficiency is lowermore closely corresponds to the Rosenbluth weight. No sig-
than 1 wherZ is lower than 5: the RWA performs less effi- nificant differences were observed with the results obtained
ciently. To explain this behavior, a first reason can be sugusing the standard forig(z)=z"*7.
gested: forwards probabilities in the present RWA that are
smallgr than the ones _that would be obtained. with the Me- VI. CONCLUSION
tropolis form (detailed in Sec. Il are responsible for the
relative slowing down of the relaxation dynamics. One has The residence weight algorithm developed in this paper is
therefore implemented the Metropolis-like RWA to checka Monte Carlo sampling scheme. It considetsparallel
this point. However, one did not observe any substantial difmoves, among whicZ—1 new trial moves have been gen-
ferences in the relaxation rates with respect to the ones olerated and th&th move points backwards to the previous

Let us now examine the sequential efficieneies Figure

3. Relative efficiency
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configuration, selects a single move to carry out amon@the considering the stochastic process product of all the Poisso-
transitions and attributes a correcting “residence weight” tonian processes, which is fortunately a Poissonian process
the current configuration. These features make this algorithrwith an appropriate relaxation rate. Similar arguments were
to be both a non-Boltzmannian and non-Markovian samplingapplied to the Ising modg[L0] in which each spin was con-
scheme, which can be considered as the extension of ttedered to be an independent Poissonian process.
standard residence time algorithm to continuous ensembles. Here, we recall the approach of Novot2l] who

The residence weight algorithm has been compared to thehowed, using very simple probability arguments, that the
parallel configurational-bias scheme that appears to be theTA can be derived from the reformulation of a conventional
corresponding Boltzmannian scheme. The main difference dfletropolis-like algorithm. Since the computational box is
this latter scheme with respect to the former algorithm lies irfinite and the considered systems are discrete, one can define
the fact that the correcting biases are introduced irZ; the finite number of accessible transitions from configu-
Metropolis-like acceptance probabilities. The two methodsation C; anda!=c(i—j) the acceptance probabilities. The
are worth being implemented on parallel processors if theesidence time algorithm operates as follows: one computes
reference Monte Carlo moves require similar and long comthe 7, Metropolis acceptance ratel and their suma;
putational times relatively to the selection procedure, whicho sZi 4i. gne selects a configuratia®, using the relative
appears to be the case when continuous interatomic poten- lJ):b'I!z I—alja(l<i<Z d attrib "
tials are involved. Computer time can then be saved if the o2 lities; =a,/a;(1=]=<2;), and attributes to configu-
evaluation of theZ internal energy is distributed on separate ration G the_ weightr; = 1/(6.‘izi) thereafter d_enomlna_tes th_e
processors. The efficiency of the two Monte Carlo algo_re5|dence time. Let us outline that from a given configuration

rithms have been compared in a case study. For difficulfzi' the residence times; is independent of the previous

problems where the mean acceptance rate of the individu&lonﬁg“rations because all accessible transitions are consid-

moves is very small and where parallelization is worth beingered and so the previous configuration is naturally taken into

implemented, we observe that) when the number of par- account. This limits the use of the algorithm to discrete sys-

allel moves is smal{below five, the residence weight algo- ]E?”rf'thThe rerqu|varl]((ejncr:]e Wt')thma '\r/:ettr:()p;“s nscr:]h?nrrg)e rreft'i/llts
rithm performs slower by a factor of about @;) when the 0 € correspondence between the mean number of Vie-

number of parallel moves increases above five, the reIativHOpOl'S unsuccessful attempts before leaving the current

efficiency of the residence weight algorithm with respect toqonﬂguranonci and the mean residence time on that con-

the parallel configurational-bias scheme increases and tenBQUfa“O”
towards 1. %

The reasons for this feature were found to lie in the struc- n=> k(l—-a/z)* ta,/z,=(a;/Z)"1, (A1)
ture of the schemes themselves. Because the residence k=1

weight algorithm can return to an older configuratioaver-
sal), it requires twice more Monte Carlo steps than the parwhere (1- a;/Z,)“ a1z, is to be interpreted as the prob-
allel configurational-bias scheme but utilizes the same subsability of k—1 successive Metropolis rejections before an
of trial moves twice. It results that the efficiency of both acceptation. Moreovewa! corresponds to the escape prob-
schemes becomes equivalent as soon as a sufficient numbsiility through exit] sincea{=2°k°:1(1—ai /Zi)"*la{'/Zi .
of trial moves are generated in parallel. The use of a Metropolis algorithm thus seems to be more
The choice for implementing the parallel configurational- efficient when the mean number of rejections is smaller than
bias scheme or its corresponding non-Boltzmannian variarnthe number of accessible transitid@, which is equivalent
form should therefore be dictated by the nature of the conto a residence time smaller thaf)(a;>1). At variance,
sidered problem. We show in a forthcoming pafb#] that  when 7, is large compared t&;(a;<1), the use of the resi-
the residence weight algorithm is particularly well suited togence algorithm becomes preferable over the Metropolis-like
the computation of chemical potentials by means of arbigigorithm. Although the parallel implementation of this algo-
trarily biased Monte Carlo schemes for inserting or deletingithm on separate processors seems straightforward, it was
particles. never carried out. The reason is that the residence time algo-
rithm is usually implemented with appropriate tabulations
ACKNOWLEDGMENTS [10] in systems where the evaluation _of the configuratio_nal
energy only represents a small fraction of the computing
The author is grateful to Dr. J.-L. Bocquet, Dr. Y. Limoge, time so that the gain that can be obtained from parallelization
Dr. D. Ghaleb, Dr. G. Martin, and Professor P. Bellon foris not significant.
fruitful and stimulating discussions. Let us now consider the various forms that can be used
for the acceptance probabilities. In equilibrium Monte Carlo
studies, the Metropolis-like probabilities;;=min[1,exp
—B(E;—E)] are used very often and are very convenient.
The residence time algorithARTA), from which the resi- However, when kinetics are studig®2,23 a different
dence weight algorithm is derived, is recalled here. The RTAhoice should be made: transition rates depending on an ac-
was proposed by Lanof8] as a mathematical trick allowing tivation barrier with the formaif=exp—/3(Es— E) are to be
to save computing time in Monte Carlo simulations dealingused instead, wherE; is the internal energy of the initial
with many independent Poissonian processes. It consists ebnfigurationC; and Eg is the energy at the saddle position

APPENDIX A: RESIDENCE TIME ALGORITHM
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Cs, respectively. The reverse rates are similarly defined agomputed and used for the selection of one particular con-
alfzexp_B(Es_Ef), WhereEf and is the internal energies of Tormatlon. Be.Cause Iarge portlor]S Of.the Cqmputatlon are
the final configuratiorC; and Es is identical. The transition implemented in parallel, the configurational-bias method re-
rate ratio ensures that detailed balance Bgis still obeyed ~ Sults in a net gain in computing time. As outlined by the
for any two consecutive residence times chosen along thauthors[1], this property is general and can be exploited in
configuration chain, even thoughi and a/ are no more Cases other than polymer sampling.
probabilities.

Finally, since the algorithm proposed in Sec. Il appears to APPENDIX C: VARIANT FORM FOR THE RESIDENCE
be a straightforward extension of the residence time algo- WEIGHT ALGORITHM
rithm the name “residence weight algorithm” was chosen.

The terminology "residence time” was replaced by reS"l_proposed. For instance, a different choice for the selecting

dence weight” because the non-Markovian nature of this a S . ; .
) o . probabilities is possible. The present residence weight algo-
gorithm prevents from any statistical equivalence to the dy-. : ;
i o X rithm reduces to an algorithm with a Glauber form when a
namics of a Metropolis-like algorithm. Note that non-

Markovian residence time algorithms have also beenSlngle trial move is generated €2). Since Glauber-like

developed 23] and are currently used in lattice kinetic stud- acceptance probabilities are smaller than their corresponding

ies [24,25 to improve the computational efficiency. The MeFropohs pr_obab|I|t|e§, I can be sugges_ted that using a
> e . T residence weight algorithm with a Metropolis form might be
principle of these algorithms consists in eliminating all the

: advantageous. A parallel residence weight algorithm with a
reversal events that would be generated if the standard algR/'letropo(I;is form an be obtained by intrgducir?g the follow-

rithm was used. To do this, generalized residence times are e . : . )
g modifications to the algorithm detailed previously: one
computed to account for the numerous reversal events that

i
are subsequently not carried out. At a given configurationgf;\ﬁgitss t(?l;ze_c%)ggijlter:;ot\éisr;r;(sjlirf]i?adtzzIzi?neg; g?é?;ob?liﬁgs
the generalized residence time used by such a nor 3{{,1

/(a,—a, ~) and then select§,, among theZ—1 gener-

Markovian algorithm indeed corresponds to a mean resicn q ; C decid . ith prob
dence time over all the accessible configurations and, theré!€d configurations; one cecides to transiC{o with prob-
fore, cannot be interpreted as a correcting weight as in thability p*=min[1;@a,—a “)/(a,—aj )] or returns toC,_;

Variant forms for the residence weight algorithm can be

detailed balance equatid8). with probabilityp™=1-[(a,—a""%)/(a,—al )]; one com-
putes the residence weight of the current configuration from
APPENDIX B: CONFIGURATIONAL MONTE CARLO Eq. (9):
SCHEMES . 1 _ .
|m|n[(an_a2 1) 1;(an_a2+l) 1] if Chi1=Cpn
The principle of the configurational-bias Monte Carlo ™n= Z1y - NP
prinetp J " l@—ar i (a—al) Tt i Craa=Coos.

scheme, on which is based the parallel configurational-bias
scheme is briefly recalled. This efficient method is devoted to

the 'sampling of polym_er conformations and consists of in-5.4 can check that, is invariant with respect to a chain
serting a polymer chain one bead after the other. For ea‘cﬁversal and notice that this algorithm reduces to a Metropo-
polymer bead, several, let saytrial locations are generated lis form for Z=1.

in parallel, but only one particular trial location is selected

di d bability f ! hich . Finally, let us outline that in the derivation of the algo-
according to an adequate probability function, Which assoChji,m “ihe acceptance rates are not necessarily acceptance

4 - robabilities. These quantities can be derived from any ap-
energy configuration. The commonly used Rosenbluth prosﬁ) . quant WV y ap

o ) - . _ ; propri nce functi lon he residen
ability function satisfies this property. With this procedure propriate acceptance functiofl as long as the residence

. oo ~~ “rweight invariance with respect to a chain reversal is guaran-
each bead location has been optimized, so the resulting afced. We have thus carried out several simulations with a

ceptz%'nce probability is enhanced by a factor increasing "alyierent form for the acceptance rates. For instance, we have
most” exponentially with the polymer length when compared N ) ) L
to a direct method generating unbiased polymer conformaSnosena, =min(1,7, /P,) and did not notice any signifi-

tions. This gain thus largely compensates the additional co&@nt differences on the efficiencies with respect to the choice
of generating the equivaler polymer chains, cost that madg in the present study. However, an essential point _to
grows linearly with the polymer length. This explains why note is that the acceptance rates shoul_d always be a functl_on
the CBMC method reveals to be very efficient. The method?f Boltzmann weight ratios. Let us consider a case where this
is general and variants have been developed for p0|ymé?o’|nt is not respected, for instance, if the acceptance rate
sampling[26,27). a) =P, was chosen. The selection probability would be-
Since the configurational-bias method involves the comcome equal to the Rosenbluth weight or to the selection
putation of several independent operati¢iasks in parallel,  probability for the conventional algorithfiG(z)=z"?] at
a natural parallelization of the method would consist of dis-half the actual temperature. It would then appear that the
tributing the computations on separate processors, as shovafgorithm would generate a configuration chain that would
by Smit and co-workers in a previous study. In this vari-  “approximately” samples the ensemble at half the desired
ant form, several polymer conformations themselves weréemperaturgby approximate sampling we mean if the resi-
generated in parallel, corresponding Rosenbluth factors werdence weights were omitted from the ensemble avegrage

(CD
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The use of the adequate weighted sampling procedure wouldaf such a Rosenbluth selection probability, even if correct in
correct for the fact that the configuration chain is distributedprinciple, would yield a statistically inefficient sampling
very far from the desired temperature. Nevertheless, the uscheme.
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