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Parallel Monte Carlo simulations using a residence weight algorithm

M. Athènes*
CEA Saclay, Service de Recherches de Me´tallurgie Physique, 91191 Gif-sur-Yvette, France

~Received 23 October 2001; revised manuscript received 13 March 2002; published 3 July 2002!

A parallel Monte Carlo~MC! algorithm, the residence weight algorithm, is proposed. This algorithm is an
extension to continuous ensembles of the residence time algorithm. The proposed algorithm consists of gen-
erating several trial MC moves in parallel, selecting one of them using appropriate relative probabilities and
correcting the non-Boltzmannian sampling procedure by means of appropriate configuration weights. The
corresponding parallel Boltzmannian scheme is based on a configurational-bias Monte Carlo scheme and will
also be considered. The efficiency of both parallel algorithms has been compared in a case study: the slow
relaxation dynamics in a model silicate. For a small number of trial moves generated in parallel, we observe
that the residence weight algorithm performs less efficiently than its corresponding configurational-bias scheme
by a factor of about 2. However, when the number of parallel trial moves increases and becomes larger than
ten, we observe that the residence weight algorithm and the corresponding configurational-bias scheme per-
form with equivalent efficiencies.
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I. INTRODUCTION

Equilibrium properties of a given statistical ensemble c
be accurately estimated by performing Monte Carlo
semble averages: a chain of configuration in the phase s
is constructed so as to sample the desired statistical
semble. To construct this configuration chain, we must
peatedly generate a new configuration from the current
using a stochastic process defined by some appropriate
lution rules that are to be specified. These evolution ru
must obey two principles, ergodicity and detailed balance
as to insure that the appearance probability of any gener
configuration is compatible with the equilibrium statistics
the ensemble. Ergodicity states that any two configurati
of the phase space can be connected with a configura
chain. Detailed balance that is a sufficient but not a neces
condition states that the probability transition fluxes betwe
two configurationsCi andCf , the initial and final configura-
tions, respectively, are equal. This latter principle resu
from both the microreversibility and incompressibility of th
equations of mechanics.

For many systems of interest, and particularly for slow
relaxing amorphous structures, the need for saving com
ing time is a permanent request. An extensively exploi
solution consists in increasing the sampling efficiency
means of ‘‘clever’’ Monte Carlo moves preferentially gene
ated towards low energy configurations. Although the ess
tial motivation for developing these elaborated Monte Ca
algorithms is aimed at increasing the sampling efficien
some of these algorithms appear to be particularly w
suited to parallel implementation since they offer a large p
tion of similar and independent tasks that can be easily
tributed on distinct processors. This issue was noticed
discussed in a previous study by Esselink, Loyens, and S
@1# who detailed the parallelization of force bias@2–5#, and
configurational-bias@6# Monte Carlo methods.

*Electronic address: Manuel.Athenes@cea.fr
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The scope of this paper will concern the second appro
whose principle can be summarized as follows: let us c
sider that the basic moves to parallelize consist in rand
displacements applied to randomly selected particles. If
procedure allowing the construction of the new configurat
Cf from the initial one exhibits symmetric probabilities,
possible acceptance probability@7# for these moves isc( i
→ f )5min(1,exp2bDE), whereDE is the variation of the
internal energy. This implies that transitions with small d
placement amplitudes will have a small variationDE of the
internal energy and will therefore be accepted with a h
probability, but will lead to a weak sampling efficiency. A
variance, transitions with large displacement amplitudes w
be hardly accepted due to a very low acceptance rate,
result in a high sampling efficiency. Since the internal ene
evaluation of trial configurations represents the larg
amount of the computer time, it appears beneficial to gen
ate high amplitudes displacements in parallel and to se
one with an adequate procedure@the CBMC
~configurational-bias Monte Carlo! scheme# so as to increase
the mean acceptance rate and thus the computational
ciency.

All the mentioned Monte Carlo methods are said to
Boltzmannian sampling schemes: consider a given confi
ration chain has been generated; the appearance proba
of any configuration in the chain converges towards the B
zmann weight when the length of the chain increases to
finity. There also exists non-Boltzmannian schemes
which configuration weights must be included in the sa
pling procedure so as to correct for the fact that the ch
configurations are not distributed according to the equi
rium statistics. Although there exists numerous no
Boltzmannian Monte Carlo sampling schemes, the para
implementation of such algorithms belonging to this seco
class has never been considered~to my knowledge! because
existing schemes did not present large portions of indep
dent tasks easy to parallelize.

In the present paper, we focus on the parallel implem
tation of a non-Boltzmannian method. For this purpose
scheme adapted for parallelization has been developed
called the residence weight algorithm~RWA!. The paper is
©2002 The American Physical Society01-1
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organized as follows: the essential features of the Boltzm
nian and non-Boltzmannian sampling techniques are
briefly recalled; in the following section, the residen
weight algorithm is described and a proof is given tha
weighted detailed balance condition is obeyed; a comp
tive study between the parallel residence weight algorit
and the equivalent parallel configurational-bias scheme
carried out on a case study.

II. MONTE CARLO SAMPLING SCHEMES

The two ways to perform Monte Carlo sampling, expos
previously, are recalled. Note that this simple classificatio
adapted for most Monte Carlo schemes currently used
statistical physics, however, from a mathematical point
view, more complete classifications have also been propo
@8#.

~i! Boltzmann sampling is obtained by introducing t
statistical bias associated to the Monte Carlo move into
acceptance probability@7#, which is itself derived from the
detailed balance equation

Pib~ i→ f !c~ i→ f !5Pfb~ f→ i !c~ f→ i !, ~1!

wherePi ~resp.Pf) is the Boltzmann weights of the initia
configuration ~resp. the final configuration!, and b( i→ f )
@resp.b( f→ i )# is the probability to generate the trial con
figuration Cf ~resp.Ci) starting from configurationCi ~resp.
Cf). The acceptance probabilities for the forwards and ba
wards trial transition arec( i→ f ) andc( f→ i ), respectively.
The acceptance probability proposed by Metropolis@7#

c~ i→ f !5minS 1,
Pfb~ f→ i !

Pib~ i→ f ! D ~2!

is compatible with Eq.~1! and implies that one must com
pute thea priori probability b( f→ i ) of selecting the old
configuration from the new one and the statistical bias c
responds to the ratiob( f→ i )/b( i→ f ).

~ii ! Non-Boltzmannian sampling: the statistical bias is a
counted for in the ensemble average so as to correct for
imposed transitions. The weighted detailed balance condi
for this non-Boltzmannian sampling scheme requires

Pn

tn
a~n→n11!5

Pn11

tn11
a~n11→n!, ~3!

wheretn andtn11 are the correcting weights to be include
in the following biased averaging scheme that allow
evaluation of a physical quantityA,

^A&t5

(
i 51

N
t iA~ i !

(
i 51

N
t i

. ~4!

An essential additional condition that is to be obeyed c
cerns the reversibility of the scheme itself. If this point is n
guaranteed, the correcting weightstn obtained when the con
figuration chain is constructed in the forwards or backwa
01670
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direction would not be identical, which would imply that E
~3! would not be unambiguously defined.

Class~i! techniques includes, among many other schem
the force-bias@2–5# Monte Carlo schemes~FBMC! and
CBMC @6#, respectively for which the parallelization wa
discussed previously~the parallel force-bias algorithm i
called the hybrid molecular dynamics/Monte Carlo metho!.
Class~ii ! techniques comprises a wide range of algorithm
The most naive such algorithm consists in performing r
dom sampling: a random configurationCn11 is generated in-
dependently fromCn and is attributed a correcting weigh
tn11}Pn11, which is compatible with Eq.~3!. More effi-
cient class~ii ! algorithms have however been developed
discrete systems: the residence time algorithm@9,10#, de-
tailed in Appendix A, considers all the accessible configu
tions fromCn , selects one of them,Cn11, using an appropri-
ate probability function a(n→n11), computes the
correcting weight~residence time! compatible with Eq.~3!
and uses it either to bias the configuration weight or to
crement the time variable, depending on whether equilibri
or kinetic features are investigated.

In the random sampling scheme, the transition probabi
from Cn to Cn11 does not depend onCn while in the follow-
ing example, the transition probability fromCn to Cn11 does
depend onCn . There also exists non-Boltzmannian alg
rithms for which the transition probability fromCn to Cn11
depends on bothCn andCn21. In such a case, the algorithm
said to be non-Markovian. This feature is present in so
techniques aimed at calculating free energy differences
tween two canonical ensembles. This is for instance the c
for the Rosenbluth sampling method@11,12#, which is based
on the particle test insertion method@13#. This point is dis-
cussed in a companion paper@14#. In the following section, a
non-Boltzmannian algorithm that can be easily parallelized
proposed. This algorithm appears to be the non-Markov
extension of the residence time algorithm~described in ap-
pendix A! to continuous systems.

III. RESIDENCE WEIGHT ALGORITHM

Let us consider that a chain of configurationCn with
weight tn has been generated using the desired Monte C
algorithm, where the numbern is an increasing configuration
index. The compatibility of the weighted chain with the equ
librium statistic is insured by imposing the equality betwe
the forwards and backwards weighted probability fluxes
tween any two configurations of the chain. The microreve
ibility imposes that if the whole configuration chain is r
versed then configurationCn should always be a possible tria
configuration from configurationCn11 in the selection
scheme of the algorithm, even though the probability of o
tainingCn from Cn11 within a finite set of trial generation is
‘‘practically’’ zero in a continuous ensemble during a fini
Monte Carlo simulation.

The RWA is therefore defined as follows:Z21 trial tran-
sitions are randomly generated, an additionalZth trial tran-
sition pointing backwards to the previous configuration
imposed; then a single transition, selected among thesZ
possible trial transitions, is finally implemented. The intr
1-2
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duced modifications imply that the Monte Carlo process p
sesses a memory that has to be taken into account in
probability fluxes. Since the convergence to equilibrium
insured by the equality of the forwards and backwards pr
ability fluxes, the following weighted detailed balance co
dition should be obeyed:

1

tn
Pna~n→n11un21!5

1

tn11
Pn11a~n11→nun12!,

~5!

where a( l→muk) is the conditional probability to transi
from Cl to Cm knowing that the system was in configuratio
Ck previously. From configurationCn , a(n→n11un21) ac-
counts for the fact that the backwards transition towa
Cn21 is imposed and thatZ21 trial moves have to be gen
erated prior to selecting one among them. From configu
tion Cn11 in Eq. ~5!, the forwards and imposed backwar
configurations areCn and Cn12 since the chain is travele
backwards.

The ‘‘residence weights’’tn and tn11 correspond to the
correction to introduce in the sampling scheme so as to
cover the equilibrium statistics. They can be interpreted
follows: if a weight of one is attributed to configurationCn ,
then the selected configurationCn11 must be given a weigh
of tn11 /tn so as to correct for having imposed the transitio
It then follows by induction that Eq.~4! leads to a correc
sampling scheme as shown below. Let us consider any
configurationsCp andCq in the weighted chain. The trans
tion flux from Cp to Cq is the product of the probability o
generating and selecting the trial probabilities for each of
q2p steps

K~p→q!5
Pp

tp
)
n5p

q21

a~n→n11un21!, ~6!

while the probability flux for generating the reverse mac
move is

K~q→p!5
Pq

tq
)
n5q

p21

a~n→n21un11!. ~7!

Substituting Eq.~3! into Eq. ~7! simplifies the residence
weight ratio to

K~p→q!

K~q→p!
5

tqPp

tpPq
)
n5p

q21
tnPn11

tn11Pn
51. ~8!

Let us note that when an averaging procedure is initiated,
weight of the first configuration is not specified since t
previous configuration does not exist. This introduced b
can be safely neglected since in practice a large numbe
independent configurations is actually used.

One now considers a possible residence weight com
ible with the weighted detailed balance equation:

tn5a~n→n11un21!@G~Pn /Pn11!#21, ~9!

where the acceptance functionG, which will be specified by
the reference moves that one wishes to parallelize, posse
the following feature:
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G~z!5z21G~z21!. ~10!

Since the sampling scheme@Eq. ~4!# does not depend on
whether the configuration chain is traveled backwards or
wards, the scheme itself must be reversible, and the r
dence weights@Eq. ~9!# should not depend on the chain d
rection. Considering the fact that the weighted detai
balance condition also applies between configurationsCn21
andCn , the residence weight invariance means that Eq.~9!
must remain invariant ifn11 and n21 are permuted. It
implies the following relationship between the probabiliti
a(n→n11un21) anda(n→n21un11):

a~n→n11un21!

a~n→n21un11!
5

G~Pn /Pn21!

G~Pn /Pn11!
. ~11!

This condition guarantees that adequate residence we
can be deduced from Eq.~9!. One now describes in details
parallel procedure satisfying Eq.~11! that allows to generate
Z21 trial configurations fromCn and to selectCn11. Let us
consider the reference~Markovian! moves that one wishes t
implement in parallel. For a move fromCi to Cj with respec-
tive Boltzmann weightPi andPj , one definesbi

j the refer-
encea priori probability andai

j5(bi
j )21G(Pi /Pj ) the corre-

sponding acceptance rate. In the applicative part of
present study, alla priori probabilities will be equal to the
same constant value. We however take them into accoun
as to draw the attention on the fact that they should not
omitted if one wishes to derive more general algorithms.

So as to construct a chain of weighted configurationCn ,
tn , one successively generatesZ21 new trial moves witha
priori probabilitiesbn

j , and selects one of them, let us say t
j 1th. The relative probability for this particular selection
an

j 1/(an
21( j 51

Z21an
j ), where an

2 and an
j are the acceptanc

rates for the imposed backwards move and thej th trial move
(1< j <Z21), respectively. The configuration to point bac
wards at the following step is the current configuratio
whether the selected move is backwards or forwards. Le
notean

1 the acceptance rate for the selected transition andbn
2

the a priori probability for the imposed backwards move
the nth step. One also defines the two invariant quantit
an5an

21( i 51
Z21an

i andbn5bn
2) i 51

Z21bn
i . Then the probability

to generate thenth forwards parallel move is

a~n→n11un21!5bnan
1/~anbn

2!5
bn

bn
2anbn

1
G~Pn /Pn11!.

~12!

The presence of bothbn
1 andbn

2 in the denominator of the
right hand side term in Eq.~12! results from the substitution
of an

1 and from the fact that the backwards transition is i
posed, respectively. Since alla priori probabilities are con-
stant, this form is valid whether the transition is a reversa
not. Similarly, the probability to carry out a backwards mo
from Cn is
1-3
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a~n→n21un11!5bnan
2/~anbn

1!5
bn

bn
2anbn

1
G~Pn /Pn21!.

~13!

Since the ratio of equality~12! with respect to equality~13!
satisfies the condition of Eq.~11!, the residence weight de
duced from Eq.~9! does not depend on which direction th
chain is generated. Omitting now the constant factor rela
to thea priori probabilities, the residence weight is

tn5
1

an
, ~14!

whose form is analogous to the conventional ‘‘residen
time’’ of the residence time algorithm detailed in Append
A. The residence weight algorithm has been validated
merically on a body-centered cubic Ising model. Simple
semble averages were performed by means of Eq.~4!. It was
checked that the computed values~such as chemical poten
tials! did not depend on the number of parallel insertio
deletions and were in agreement with results obtained u
conventional Monte Carlo schemes.

A variant form for the RWA is also detailed in Append
C and will be used in special cases to check that the obta
results do not depend significantly on the specificity of
present algorithm form. In the following and unless oth
wise stated, simple particle displacements whose com
nents are randomly chosen in a centred cube of edge 0.
will be considered for theZ21 reference moves. One wi
also use the Glauber-like residence weight algorithm deta
previously together with the acceptance functionG(z)
5z21/2. Let us now present the Boltzmannian equivale
scheme for the residence weight algorithm.

IV. CORRESPONDING BOLTZMANNIAN ALGORITHM

The corresponding algorithm appears to be the ene
biased Monte Carlo scheme@15# or the parallel
configurational-bias scheme@16#. This scheme is the trans
position of the CBMC scheme to simple particle displac
ments, and is defined as follows:Z particle random displace
ments are generated in parallel (k51, . . . ,Z) and one of
them is selected according to the Rosenbluth weights, wh
are expressed as

Pr~ i→k!5
Pk

(
k851

Z

Pk8

5
Pk

Wi
, ~15!

wherePk8 is the Boltzmann weight of a trial configuration.
Cf is the selected configuration andWf is the Rosenbluth
weight obtained by generatingZ21 displacement fromCf ,
and imposing theZth last one toCi , then the statistical bias
introduced is

B i
f5

WiPi

WfPf
. ~16!
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The selected trial displacement is then accepted or reje
according to the following acceptance probability:

c~ i→ f !5minS 1,
Wi

Wf
D , ~17!

whose form more closely corresponds to the Metropolis-l
RWA described in Appendix C. We will adopt the standar
ized terminology@16# and refer to this algorithm as the pa
allel configurational-bias scheme~PCB!.

V. COMPARATIVE STUDY

A. Model problem

The comparative study between the two algorithms
been carried out in a model silicate. The kinetics of the sl
structural relaxation observed in amorphous materials be
its melting point is used as a benchmark for the study. N
that in this comparative study, the RWA and the PCB sche
are implemented with particle displacements and not part
insertions or deletions as it is usually the case when the P
is implemented@1,17#. The reason is that in our model sil
cate, the slow relaxation kinetics offers a convenient a
reliable tool to measure the algorithm efficiencies. Moreov
by varying the particle amplitude displacement, the me
acceptance rate will also vary and its influence on the e
ciencies can be easily investigated.

The interatomic potentials are Born-Mayer-Huggins p
potentials with additional three-body terms involving O-Si-
and Si-O-Si triplets so as to obtain a better agreement w
the experimental structures. Potential parameters are g
elsewhere@18–20#. One has randomly inserted 384 silico
and 768 oxygen atoms in a cubic computational box of s
25.9 Å, which corresponds to a density of 2.21 g/cm3. The
box is partially equilibrated by performing Monte Carlo ra
dom atom displacements at the low temperature of 550
The final configuration is taken as the starting configurat
for the subsequent study.

B. Preliminary definitions

In this feasibility study, the parallelization is actually n
implemented, but will be studied by monitoring appropria
efficiency parameters. Technical details about the parallel
tion are given elsewhere@17#. The evolution of the relaxation
kinetics will be monitored as a function of the number
parallel displacements, which corresponds to the comp
tional time if the selection procedure and the communicat
time between processors is neglected. The evolution of
internal energy will also be monitored as a function of t
total number of trial displacements, which corresponds to
total computational cost if the selection procedure and
communication time between processors is neglected.

One thus defines the parallel efficiencypZ , which corre-
sponds to the gain in computing time when implementing
moves in parallel with respect to the reference scheme c
sidering only one trial move,

pZ5
daZ

daX
H X52 if RWA

X51 if PCB,
~18!
1-4
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wheredaZ corresponds to the relaxation rate of the inter
energy as a function of the number of Monte Carlo ste
obtained withZ parallel moves. One also defines the sequ
tial efficiency sZ , which corresponds to the gain in tot
CPU ~central processing unit! ~i.e., if sequential implemen
tation!. Depending on whether RWA or PCB is implemente
the relationship with the parallel efficiency is

sZ5H pZ~Z21! if RWA

pZ~2Z21! if PCB.
~19!

FIG. 1. Evolution of the internal energy as a function of t
number of moves~abscissa! with the RWA and varying the numbe
of parallel displacements,Z.

FIG. 2. Evolution of the internal energy as a function of the to
number of trial displacements~abscissa! with the RWA and varying
Z.
01670
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Knowledge of the behavior of both parallel and sequen
efficiencies as a function of the number of parallel displa
mentsZ allows to optimize the use of a parallel compute
However, in our comparative study, it will also be instructi
to define and monitor the relative efficiency of the two alg
rithms. This one can be obtained from the ratio of the rel
ation rate for the RWA with respect to the one obtained
the PCB scheme as follows:

rZ5@daZ
RWA~Z21!#/@daZ

PCB~2Z21!# if Z.2
~20!

l

FIG. 3. Evolution of the internal energy as a function of t
number of PCB attempted moves with varyingZ.

FIG. 4. Evolution of the internal energy as a function of the to
number of trial moves~abscissa! with the PCB scheme and varyin
Z.
1-5
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and

r25da2
RWA/da1

PCB. ~21!

C. Results and discussion

1. Parallel efficiency

Prior to comparing the residence weight algorithm to
parallel configurational-bias scheme, the influence of
number of parallel trial moves is investigated for both me
ods separately. Relaxation kinetics of the internal ene
have been computed using the residence weight algor
with various numbers of parallel displacementsZ(Z52, 5,
10, 20, 30, 50, 80, 100, 250! and have been displayed i
Figs. 1 and 2, respectively. The efficiency parameters h
been estimated from the number of relaxation steps requ
by the system to reach24.618 10218 J/atom. The quanti-
tiespZ andsZ have been plotted in Fig. 5~a! so as to give an
indication of the general trend. One observes that the e
ciency pZ increases with the increasing number of para
displacements belowZ550 and then stabilizes beyondZ
550. The optimal choice is thus aboutZ550 with a gainpZ
about 20. Relaxation kinetics of the internal energy ha
been computed using the parallel configurational-b
scheme with various numbers of parallel displaceme
Z (Z51, 5, 10, 20, 30, 50, 80, 100, 250! and are displayed
in Figs. 3 and 4. The quantitiespZ and sZ have also been
estimated from the number of relaxation steps required
the system to reach24.63 10218 J/atom and have bee
plotted in Fig. 5~b!. One observes that the efficiency of th
algorithmpZ increases with the increasing number of par
lel displacements untilZ530 and then abruptly decreas
beyondZ530. The optimal choice is thus about 30 with
gain of aboutpZ59.

So as to analyze and compare the observed behaviors
mean acceptance ratesaZ for both the RWA and the PCB
scheme were computed and displayed in Fig. 5 as a func
of Z together withpZ andsZ . A move is said to be accepte
with the RWA when it corresponds to a forwards mo
(Cn115” Cn21). The mean acceptance rate for the stand
Metropolis algorithm corresponds toa1 for the PCB scheme
and was found equal to 5.6%. For both parallel schem

FIG. 5. Evolution of the mean acceptance rateaZ , and of the
parallel and sequential efficiencies (pZ andsZ) as a function of the
number of parallel trial movesZ: ~a! for the RWA and~b! for the
PCB scheme and the same legend as in~a!.
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when the number of parallel generation first increases,
probability to have generated at least one favorable displa
ments is also enhanced, which explains the subsequen
crease of bothaZ andpZ . For large increasingZ values and
the RWA, aZ is greater than 80% and saturates. The e
ciency pZ thus also saturates since only a single favora
displacement can be carried out at once. For large increa
Z values and the PCB scheme, the observed decreasingpZ is
also accompanied by a decreasingaZ value and is indeed a
consequence of this weak acceptance rate.

The fact thataZ decreases results from the way the PC
scheme operates. The statistical bias used by the schem
quires to compute ana priori probability for the system to
generate and select the initial configuration from the fi
configuration. If the forwards move leads to an energetica
favorable configuration, and if favorable moves are also g
erated from the final configuration, which is likely forZ large
enough, then it means that one imposes the selection o
unfavorable configuration for the reversea priori move
among a set of configurations containing one or more en
getically favorable configurations. ForZ large enough and
assuming that favorable displacements present a spectru
energy variations that is similar from bothCi and Cf , the
ratio Wi /Wf of the Rosenbluth factors, which enters the a

FIG. 6. Evolution of the relative efficiencyrZ as a function of
the number of parallel displacements,Z.

FIG. 7. Evolution of the relative efficiencyrZ as a function of
the number of parallel displacements,Z, with a mean acceptanc
rate ofam53.231023. The dotted line corresponds to the functio
(Z21)/Z.
1-6



r t

b
es
th
b
th
lf

e
en

tio

e

an
an
p
a

is
o
b

w
m
in

U
th

ti
lg
w

e
-
ug
ar

e

a
ck
di
o

ak
ct
is
e
n-
le
re-
of

en
e.

ate

evi-
ut-

e-
ce
le-
ut or

e

ith

li-
as
ial
ive

B
he
ant
es
-
eti-
er-
an
e

m

.
eed,
rm

sig-
ned

r is

-
s

PARALLEL MONTE CARLO SIMULATIONS USING A . . . PHYSICAL REVIEW E66, 016701 ~2002!
ceptance probability for the move is expected to be simila
Pi /Pf . This explains why the mean acceptance rateaZ de-
creases, as observed in Fig. 5. Note that the statement a
the Rosenbluth ratio would not be correct if the trial sit
were placed into a region of phase space different from
old site, e.g., the particle swap move in the Gibbs ensem

The above mentioned limitation does not appear with
RWA. The reason lies in the structure of the algorithm itse
Let us consider that the system has transited fromCn21 to an
energetically favorable configurationCn . For large enoughZ
one can assume that the spectrum of theZ energy variations
is equivalent from bothCn21 or Cn , because trial sites ar
placed near the old site. The algorithm will generate an
ergetically favorable configurationCn8 with a high probabil-
ity and will select it (Cn11[Cn8) with a high probability as
well, although the correcting bias associated to configura
Cn will be very small@residence weighttn in Eq. ~14!#. Fa-
vorable forwards moves are thus preferentially selected
the detriment of unfavorable backwards moves.

2. Sequential efficiency

Let us now examine the sequential efficienciessZ . Figure
5 displayssZ for both the RWA and the PCB scheme. W
observe that both efficiencies decreases asZ increases with
Z. This means that if sequential implementation of the r
dom displacements is indeed carried out, both the RWA
the PCB scheme do not present any advantages with res
to the standard Metropolis algorithm or the RWA with
single displacement (Z52), respectively. The reason for th
behavior may be explained as follows: both parallel alg
rithms carry out single moves at each step and the proba
ity to generate more than one favorable move increases
Z; since only a single move is implemented at best, the nu
ber of favorable moves that are not implemented also
creases withZ, and the sequential efficiency decreases.

Note that the loss of CPU for the RWA andZ550 ~stabi-
lization of the parallel efficiency! is about a factor of
2.5 (sZ50.4), while the loss for the PCB scheme andZ
530 ~optimal parallel efficiency! is about a factor of
6.6 (sZ50.15). The RWA seems to require less total CP
This suggests to investigate the relative efficiency of
RWA with respect to the PCB scheme.

3. Relative efficiency

In the previous discussions, the parallel and sequen
efficiencies were considered independently for each a
rithms. We now examine the relative efficiency for these t
algorithms.

One observes in Fig. 6 that, the relative efficiency is low
than 1 whenZ is lower than 5: the RWA performs less effi
ciently. To explain this behavior, a first reason can be s
gested: forwards probabilities in the present RWA that
smaller than the ones that would be obtained with the M
tropolis form ~detailed in Sec. III! are responsible for the
relative slowing down of the relaxation dynamics. One h
therefore implemented the Metropolis-like RWA to che
this point. However, one did not observe any substantial
ferences in the relaxation rates with respect to the ones
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tained with the Glauber-like RWA. The reason for the we
performance of the RWA can be finally attributed to the fa
that whenZ is small, an energetically favorable move
more likely followed by an unfavorable move due to th
form of the selection probabilities, if we compare to the co
ventional Metropolis algorithm. Even though an unfavorab
move subsequently leads to numerous reversals, it only
sults in slowing down the relaxation dynamics by a factor
about 2 with respect to the conventional dynamics.

At variance, the relative efficiency is greater than 1 wh
Z is larger than 10: the RWA outperforms the PCB schem
However, whenZ is larger than the mean acceptance r
am

21 for Metropolis moves, the PCB acceptance rateaZ de-
creases drastically for the structural reasons explained pr
ously and it is indeed this fact that explains the relative o
performance of the RWA.

The outlined limitation of the PCB scheme is purely th
oretical and is not relevant from a practical view point, sin
the parallel configurational-bias scheme should be imp
mented in cases where the mean acceptance rate is abo
lower than 1023. It is thus instructive to monitor the relativ
efficiency in such a case.

We have therefore carried out additional simulations w
a lower mean acceptance rate (am

21'3.21023). This was ar-
tificially obtained by setting the particle displacement amp
tude to 1.2 Å instead of 0.4 Å. The relative efficiency h
been monitored with varying the number of parallel tr
moves up to 100. It is observed in Fig. 7 that the relat
efficiency tends towards 1 with increasingZ. In this case the
RWA does not outperform the PCB scheme.

The fact that the performance of both RWA and PC
scheme are similar for difficult problems results from t
structure of the RWA. Since the reversal rate is import
with the RWA even for large numbers of parallel trial mov
(Z5100), a forwards move will be likely followed by sev
eral reversals. The algorithm oscillates around an energ
cally favorable configuration and performs numerous rev
sals leading to unfavorable configurations. From
unfavorable configuration the system will likely return to th
favorable configuration but will waste 2Z22 trial moves
~including both the forwards and backwards transition!. This
schematic representation implies that forZ52, the RWA is
less efficient by a factor of 2 than the Metropolis algorith
~PCB with Z51) and that the dependence onZ of the rela-
tive efficiency can be approximated by (Z21)/Z. This
simple predictive law is approximately observed in Fig. 7

Note that the observed trend seems to be general. Ind
additional simulations were carried out using a different fo
for the acceptance functionG(z)5min(1,z21). This form
more closely corresponds to the Rosenbluth weight. No
nificant differences were observed with the results obtai
using the standard form@G(z)5z21/2#.

VI. CONCLUSION

The residence weight algorithm developed in this pape
a Monte Carlo sampling scheme. It considersZ parallel
moves, among whichZ21 new trial moves have been gen
erated and theZth move points backwards to the previou
1-7
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configuration, selects a single move to carry out among thZ
transitions and attributes a correcting ‘‘residence weight’’
the current configuration. These features make this algori
to be both a non-Boltzmannian and non-Markovian samp
scheme, which can be considered as the extension of
standard residence time algorithm to continuous ensemb

The residence weight algorithm has been compared to
parallel configurational-bias scheme that appears to be
corresponding Boltzmannian scheme. The main differenc
this latter scheme with respect to the former algorithm lies
the fact that the correcting biases are introduced
Metropolis-like acceptance probabilities. The two metho
are worth being implemented on parallel processors if
reference Monte Carlo moves require similar and long co
putational times relatively to the selection procedure, wh
appears to be the case when continuous interatomic po
tials are involved. Computer time can then be saved if
evaluation of theZ internal energy is distributed on separa
processors. The efficiency of the two Monte Carlo alg
rithms have been compared in a case study. For diffi
problems where the mean acceptance rate of the indivi
moves is very small and where parallelization is worth be
implemented, we observe that:~i! when the number of par
allel moves is small~below five!, the residence weight algo
rithm performs slower by a factor of about 2;~ii ! when the
number of parallel moves increases above five, the rela
efficiency of the residence weight algorithm with respect
the parallel configurational-bias scheme increases and t
towards 1.

The reasons for this feature were found to lie in the str
ture of the schemes themselves. Because the resid
weight algorithm can return to an older configuration~rever-
sal!, it requires twice more Monte Carlo steps than the p
allel configurational-bias scheme but utilizes the same su
of trial moves twice. It results that the efficiency of bo
schemes becomes equivalent as soon as a sufficient nu
of trial moves are generated in parallel.

The choice for implementing the parallel configuration
bias scheme or its corresponding non-Boltzmannian var
form should therefore be dictated by the nature of the c
sidered problem. We show in a forthcoming paper@14# that
the residence weight algorithm is particularly well suited
the computation of chemical potentials by means of a
trarily biased Monte Carlo schemes for inserting or delet
particles.
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APPENDIX A: RESIDENCE TIME ALGORITHM

The residence time algorithm~RTA!, from which the resi-
dence weight algorithm is derived, is recalled here. The R
was proposed by Lanore@9# as a mathematical trick allowing
to save computing time in Monte Carlo simulations deal
with many independent Poissonian processes. It consis
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considering the stochastic process product of all the Poi
nian processes, which is fortunately a Poissonian proc
with an appropriate relaxation rate. Similar arguments w
applied to the Ising model@10# in which each spin was con
sidered to be an independent Poissonian process.

Here, we recall the approach of Novotny@21# who
showed, using very simple probability arguments, that
RTA can be derived from the reformulation of a convention
Metropolis-like algorithm. Since the computational box
finite and the considered systems are discrete, one can d
Zi the finite number of accessible transitions from config
ration Ci and ai

j5c( i→ j ) the acceptance probabilities. Th
residence time algorithm operates as follows: one comp
the Zi Metropolis acceptance ratesai

j and their sumai

5( j 51
Zi ai

j ; one selects a configurationCf using the relative
probabilitiesa i

j5ai
j /ai(1< j <Zi), and attributes to configu

ration Ci the weightt i51/(aiZi) thereafter denominates th
residence time. Let us outline that from a given configurat
Ci , the residence timest i is independent of the previou
configurations because all accessible transitions are con
ered and so the previous configuration is naturally taken
account. This limits the use of the algorithm to discrete s
tems. The equivalence with a Metropolis scheme res
from the correspondence between the mean number of
tropolis unsuccessful attempts before leaving the curr
configurationCi and the mean residence time on that co
figuration

t i5 (
k51

`

k~12ai /Zi !
k21ai /Zi5~ai /Zi !

21, ~A1!

where (12ai /Zi)
k21ai /Zi is to be interpreted as the prob

ability of k21 successive Metropolis rejections before
acceptation. Moreovera i

j corresponds to the escape pro
ability through exitj sincea i

j5(k51
` (12ai /Zi)

k21ai
j /Zi .

The use of a Metropolis algorithm thus seems to be m
efficient when the mean number of rejections is smaller th
the number of accessible transitionZi , which is equivalent
to a residence time smaller thanZi(ai.1). At variance,
whent i is large compared toZi(ai,1), the use of the resi-
dence algorithm becomes preferable over the Metropolis-
algorithm. Although the parallel implementation of this alg
rithm on separate processors seems straightforward, it
never carried out. The reason is that the residence time a
rithm is usually implemented with appropriate tabulatio
@10# in systems where the evaluation of the configuratio
energy only represents a small fraction of the comput
time so that the gain that can be obtained from paralleliza
is not significant.

Let us now consider the various forms that can be u
for the acceptance probabilities. In equilibrium Monte Ca
studies, the Metropolis-like probabilitiesai j 5min@1,exp
2b(Ej2Ei)# are used very often and are very convenie
However, when kinetics are studied@22,23# a different
choice should be made: transition rates depending on an
tivation barrier with the formai

f5exp2b(Es2Ei) are to be
used instead, whereEi is the internal energy of the initia
configurationCi and Es is the energy at the saddle positio
1-8
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Cs , respectively. The reverse rates are similarly defined
af

i 5exp2b(Es2Ef), whereEf and is the internal energies o
the final configurationCf andEs is identical. The transition
rate ratio ensures that detailed balance Eq.~5! is still obeyed
for any two consecutive residence times chosen along
configuration chain, even thoughaf

i and ai
f are no more

probabilities.
Finally, since the algorithm proposed in Sec. III appears

be a straightforward extension of the residence time a
rithm the name ‘‘residence weight algorithm’’ was chose
The terminology ‘‘residence time’’ was replaced by ‘‘res
dence weight’’ because the non-Markovian nature of this
gorithm prevents from any statistical equivalence to the
namics of a Metropolis-like algorithm. Note that no
Markovian residence time algorithms have also be
developed@23# and are currently used in lattice kinetic stu
ies @24,25# to improve the computational efficiency. Th
principle of these algorithms consists in eliminating all t
reversal events that would be generated if the standard a
rithm was used. To do this, generalized residence times
computed to account for the numerous reversal events
are subsequently not carried out. At a given configurati
the generalized residence time used by such a n
Markovian algorithm indeed corresponds to a mean r
dence time over all the accessible configurations and, th
fore, cannot be interpreted as a correcting weight as in
detailed balance equation~3!.

APPENDIX B: CONFIGURATIONAL MONTE CARLO
SCHEMES

The principle of the configurational-bias Monte Car
scheme, on which is based the parallel configurational-b
scheme is briefly recalled. This efficient method is devoted
the sampling of polymer conformations and consists of
serting a polymer chain one bead after the other. For e
polymer bead, several, let sayZ, trial locations are generate
in parallel, but only one particular trial location is select
according to an adequate probability function, which asso
ates the highest probability to the move towards the low
energy configuration. The commonly used Rosenbluth pr
ability function satisfies this property. With this procedu
each bead location has been optimized, so the resulting
ceptance probability is enhanced by a factor increasing
most’’ exponentially with the polymer length when compar
to a direct method generating unbiased polymer confor
tions. This gain thus largely compensates the additional
of generating the equivalentZ polymer chains, cost tha
grows linearly with the polymer length. This explains wh
the CBMC method reveals to be very efficient. The meth
is general and variants have been developed for poly
sampling@26,27#.

Since the configurational-bias method involves the co
putation of several independent operations~tasks! in parallel,
a natural parallelization of the method would consist of d
tributing the computations on separate processors, as sh
by Smit and co-workers in a previous study@1#. In this vari-
ant form, several polymer conformations themselves w
generated in parallel, corresponding Rosenbluth factors w
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computed and used for the selection of one particular c
formation. Because large portions of the computation
implemented in parallel, the configurational-bias method
sults in a net gain in computing time. As outlined by th
authors@1#, this property is general and can be exploited
cases other than polymer sampling.

APPENDIX C: VARIANT FORM FOR THE RESIDENCE
WEIGHT ALGORITHM

Variant forms for the residence weight algorithm can
proposed. For instance, a different choice for the selec
probabilities is possible. The present residence weight a
rithm reduces to an algorithm with a Glauber form when
single trial move is generated (Z52). Since Glauber-like
acceptance probabilities are smaller than their correspon
Metropolis probabilities, it can be suggested that using
residence weight algorithm with a Metropolis form might b
advantageous. A parallel residence weight algorithm wit
Metropolis form can be obtained by introducing the follow
ing modifications to the algorithm detailed previously: o
generates theZ21 trial moves; using the same notation
previously, one computes the modified selecting probabili
an

i /(an2an
n21) and then selectsCn8 among theZ21 gener-

ated configurations; one decides to transit toCn8 with prob-

ability p15min@1;(an2an
n21)/(an2an

n8)# or returns toCn21

with probabilityp2512@(an2an
n21)/(an2an

n8)#; one com-
putes the residence weight of the current configuration fr
Eq. ~9!:

tn5H min@~an2an
n21!21;~an2an

n11!21# if Cn11[Cn8

~an2an
n21!212~an2an

n8!21 if Cn11[Cn21 .
~C1!

One can check thattn is invariant with respect to a chai
reversal and notice that this algorithm reduces to a Metro
lis form for Z51.

Finally, let us outline that in the derivation of the algo
rithm, the acceptance rates are not necessarily accept
probabilities. These quantities can be derived from any
propriate acceptance functionG as long as the residenc
weight invariance with respect to a chain reversal is guar
teed. We have thus carried out several simulations wit
different form for the acceptance rates. For instance, we h

chosenan
n85min(1,Pn8 /Pn) and did not notice any signifi-

cant differences on the efficiencies with respect to the cho
made in the present study. However, an essential poin
note is that the acceptance rates should always be a fun
of Boltzmann weight ratios. Let us consider a case where
point is not respected, for instance, if the acceptance

an
n85Pn8 was chosen. The selection probability would b

come equal to the Rosenbluth weight or to the select
probability for the conventional algorithm@G(z)5z21/2# at
half the actual temperature. It would then appear that
algorithm would generate a configuration chain that wo
‘‘approximately’’ samples the ensemble at half the desir
temperature~by approximate sampling we mean if the res
dence weights were omitted from the ensemble avera!.
1-9
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The use of the adequate weighted sampling procedure w
correct for the fact that the configuration chain is distribu
very far from the desired temperature. Nevertheless, the
ys
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of such a Rosenbluth selection probability, even if correc
principle, would yield a statistically inefficient samplin
scheme.
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